EconPapers    
Economics at your fingertips  
 

An improved estimator of omission rate for census count: With particular reference to India

Kiranmoy Chatterjee and Diganta Mukherjee

Communications in Statistics - Theory and Methods, 2016, vol. 45, issue 4, 1047-1062

Abstract: Every large census operation should undergo evaluation programs to find the sources and extent of inherent coverage errors. In this article, we briefly discuss the statistical methodology to estimate the omission rate in Indian census using dual-system estimation (DSE) technique. We have explicitly studied the correlation bias factor involved in the estimate, its extent, and consequences. A new potential source of bias in the estimate is identified and discussed. During the survey, more efficient enumerators compared to the census operations are appointed, and this fact may inflate the dependency between two lists and lead to a significant bias. Some examples are given to demonstrate this argument in various plausible situations. We have suggested one simple and flexible approach which can control this bias. Our proposed estimator can efficiently overcome the potential bias by achieving the desired degree of accuracy (almost unbiased) with relatively higher efficiency. Overall improvements in the results are explored through simulation study on different populations.

Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2013.854911 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:45:y:2016:i:4:p:1047-1062

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2013.854911

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:45:y:2016:i:4:p:1047-1062