Inverse probability weighted estimators for single-index models with missing covariates
Tingting Li and
Hu Yang
Communications in Statistics - Theory and Methods, 2016, vol. 45, issue 5, 1199-1214
Abstract:
In this article, we consider the inverse probability weighted estimators for a single-index model with missing covariates when the selection probabilities are known or unknown. It is shown that the estimator for the index parameter by using estimated selection probabilities has a smaller asymptotic variance than that with true selection probabilities, thus is more efficient. Therefore, the important Horvitz-Thompson property is verified for the index parameter in single index model. However, this difference disappears for the estimators of the link function. Some numerical examples and a real data application are also conducted to illustrate the performances of the estimators.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2012.705208 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:45:y:2016:i:5:p:1199-1214
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2012.705208
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().