Bimodal skew-symmetric normal distribution
M.Y. Hassan and
M.Y. El-Bassiouni
Communications in Statistics - Theory and Methods, 2016, vol. 45, issue 5, 1527-1541
Abstract:
We introduce a new parsimonious bimodal distribution, referred to as the bimodal skew-symmetric Normal (BSSN) distribution, which is potentially effective in capturing bimodality, excess kurtosis, and skewness. Explicit expressions for the moment-generating function, mean, variance, skewness, and excess kurtosis were derived. The shape properties of the proposed distribution were investigated in regard to skewness, kurtosis, and bimodality. Maximum likelihood estimation was considered and an expression for the observed information matrix was provided. Illustrative examples using medical and financial data as well as simulated data from a mixture of normal distributions were worked.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2014.882950 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:45:y:2016:i:5:p:1527-1541
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2014.882950
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().