EconPapers    
Economics at your fingertips  
 

Multiple mortality modeling in Poisson Lee–Carter framework

Valeria D'Amato, Steven Haberman, Gabriella Piscopo, Maria Russolillo and Lorenzo Trapani

Communications in Statistics - Theory and Methods, 2016, vol. 45, issue 6, 1723-1732

Abstract: The academic literature in longevity field has recently focused on models for detecting multiple population trends (D'Amato et al., 2012b; Njenga and Sherris, 2011; Russolillo et al., 2011, etc.). In particular, increasing interest has been shown about “related” population dynamics or “parent” populations characterized by similar socioeconomic conditions and eventually also by geographical proximity. These studies suggest dependence across multiple populations and common long-run relationships between countries (for instance, see Lazar et al., 2009). In order to investigate cross-country longevity common trends, we adopt a multiple population approach. The algorithm we propose retains the parametric structure of the Lee–Carter model, extending the basic framework to include some cross-dependence in the error term. As far as time dependence is concerned, we allow for all idiosyncratic components (both in the common stochastic trend and in the error term) to follow a linear process, thus considering a highly flexible specification for the serial dependence structure of our data. We also relax the assumption of normality, which is typical of early studies on mortality (Lee and Carter, 1992) and on factor models (see e.g., the textbook by Anderson, 1984). The empirical results show that the multiple Lee–Carter approach works well in the presence of dependence.

Date: 2016
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2014.960580 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:45:y:2016:i:6:p:1723-1732

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2014.960580

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:45:y:2016:i:6:p:1723-1732