EconPapers    
Economics at your fingertips  
 

A taxonomy of mixing and outcome distributions based on conjugacy and bridging

Michael G. Kenward and Geert Molenberghs

Communications in Statistics - Theory and Methods, 2016, vol. 45, issue 7, 1953-1968

Abstract: The generalized linear mixed model (GLMM) is commonly used for the analysis of hierarchical non Gaussian data. It combines an exponential family model formulation with normally distributed random effects. A drawback is the difficulty of deriving convenient marginal mean functions with straightforward parametric interpretations. Several solutions have been proposed, including the marginalized multilevel model (directly formulating the marginal mean, together with a hierarchical association structure) and the bridging approach (choosing the random-effects distribution such that marginal and hierarchical mean functions share functional forms). Another approach, useful in both a Bayesian and a maximum-likelihood setting, is to choose a random-effects distribution that is conjugate to the outcome distribution. In this paper, we contrast the bridging and conjugate approaches. For binary outcomes, using characteristic functions and cumulant generating functions, it is shown that the bridge distribution is unique. Self-bridging is introduced as the situation in which the outcome and random-effects distributions are the same. It is shown that only the Gaussian and degenerate distributions have well-defined cumulant generating functions for which self-bridging holds.

Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2013.870205 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:45:y:2016:i:7:p:1953-1968

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2013.870205

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:45:y:2016:i:7:p:1953-1968