Joint (k, l)-hurdle random effects models for mixed longitudinal power series and normal outcomes
F. Razie and
E. Bahrami Samani
Communications in Statistics - Theory and Methods, 2019, vol. 48, issue 12, 3025-3043
Abstract:
A random effects model for analyzing mixed longitudinal normal and count outcomes with and without the possibility of non ignorable missing outcomes is presented. The count response is inflated in two points (k and l) and the (k, l)-Hurdle power series is used as its distribution. The new distribution contains, as special submodels, several important distributions which are discussed, such as (k, l)-Hurdle Poisson and (k, l)-Hurdle negative binomial and (k, l)-Hurdle binomial distributions among others. Random effects are used to take into account the correlation between longitudinal outcomes and inflation parameters. A full likelihood-based approach is used to yield maximum likelihood estimates of the model parameters. A simulation study is performed in which for count outcome (k, l)-Hurdle Poisson, (k, l)-Hurdle negative binomial and (k, l)-Hurdle binomial distributions are considered. To illustrate the application of such modelling the longitudinal data of body mass index and the number of joint damage are analyzed.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2018.1473601 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:48:y:2019:i:12:p:3025-3043
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2018.1473601
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().