Performance of some new Liu parameters for the linear regression model
Muhammad Qasim,
Muhammad Amin and
Talha Omer
Communications in Statistics - Theory and Methods, 2020, vol. 49, issue 17, 4178-4196
Abstract:
This article introduces some Liu parameters in the linear regression model based on the work of Shukur, Månsson, and Sjölander. These methods of estimating the Liu parameter d increase the efficiency of Liu estimator. The comparison of proposed Liu parameters and available methods has done using Monte Carlo simulation and a real data set where the mean squared error, mean absolute error and interval estimation are considered as performance criterions. The simulation study shows that under certain conditions the proposed Liu parameters perform quite well as compared to the ordinary least squares estimator and other existing Liu parameters.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2019.1595654 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:49:y:2020:i:17:p:4178-4196
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2019.1595654
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().