Entropy-based estimation of the birth-death ratio
Igor Lazov and
Petar Lazov
Mathematical Population Studies, 2022, vol. 29, issue 2, 73-94
Abstract:
A population is modeled by a birth-death process in a finite state space. Its stationary distribution is indexed by its birth-death ratio. A sample of values taken by the population size has an elastic sample mean (mean of the observations), an additional sample mean (mean of the logarithms of the observations transformed by a given function), and a synchronizing sample mean (combination of the previous means). When the last two means are zero, then, by definition, information is linear in population size. This is only the case when the population size is geometrically distributed. Equalizing the entropy of a distribution to the entropy calculated on any sample involves the three sample means and allows for estimating the birth-death ratio. Only in the case of information linear in population size, this procedure reduces to maximum likelihood estimation, which involves only the elastic sample mean. The procedure is demonstrated on information that is no longer linear in population size, such as a binomial distribution of population size, where the last two means are not zero, but just equal, and a Pascal distribution and a Poisson distribution, where the last two means are neither zero nor equal.
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/08898480.2021.1988351 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:mpopst:v:29:y:2022:i:2:p:73-94
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GMPS20
DOI: 10.1080/08898480.2021.1988351
Access Statistics for this article
Mathematical Population Studies is currently edited by Prof. Noel Bonneuil, Annick Lesne, Tomasz Zadlo, Malay Ghosh and Ezio Venturino
More articles in Mathematical Population Studies from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().