Distributed port-Hamiltonian modelling for irreversible processes
W. Zhou,
B. Hamroun,
F. Couenne and
Y. Le Gorrec
Mathematical and Computer Modelling of Dynamical Systems, 2017, vol. 23, issue 1, 3-22
Abstract:
Infinite-dimensional port-Hamiltonian representation of irreversible processes accounting for the thermal energy domain is presented. Two examples are studied: the transmission line and a non-isothermal reaction diffusion process. The proposed approach uses thermodynamic variables in order to define the infinite-dimensional interconnection structure linking the different phenomena. A presentation is given for one-dimensional spatial domain. For the transmission line, the Hamiltonian is the total energy and for the reaction diffusion process it is the enthalpy or the opposite of entropy.
Date: 2017
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/13873954.2016.1237970 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:nmcmxx:v:23:y:2017:i:1:p:3-22
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/NMCM20
DOI: 10.1080/13873954.2016.1237970
Access Statistics for this article
Mathematical and Computer Modelling of Dynamical Systems is currently edited by I. Troch
More articles in Mathematical and Computer Modelling of Dynamical Systems from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().