Structural stability of the hepatitis C model with the proliferation of infected and uninfected hepatocytes
Z. Navickas,
R. Marcinkevicius,
I. Telksniene,
T. Telksnys and
M. Ragulskis
Mathematical and Computer Modelling of Dynamical Systems, 2024, vol. 30, issue 1, 51-72
Abstract:
The structural stability of the hepatitis C model with the proliferation of infected and uninfected hepatocytes is investigated in this paper. The model is clinically verified to accurately reflect the viral dynamics of hepatitis C. It is demonstrated that the limit transition from the hepatitis C model to the Riccati system coupled with the diffusive terms leads to the elimination of the quadratic terms. Such a novel effect leads to the introduction of the concept of the deformed order-1 solitary solutions. The generalized operator of differentiation is used to construct the deformed order-1 solitary solutions to the Riccati system coupled with the diffusive terms. Finally, it is demonstrated that the Riccati system coupled with the diffusive terms admits non-deformed order-1 solitary solutions, which proves the structural instability of the hepatitis C model with the proliferation of infected and uninfected hepatocytes.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/13873954.2024.2304808 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:nmcmxx:v:30:y:2024:i:1:p:51-72
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/NMCM20
DOI: 10.1080/13873954.2024.2304808
Access Statistics for this article
Mathematical and Computer Modelling of Dynamical Systems is currently edited by I. Troch
More articles in Mathematical and Computer Modelling of Dynamical Systems from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().