Arbitrage-free approximation of call price surfaces and input data risk
Judith Glaser and
Pascal Heider
Quantitative Finance, 2012, vol. 12, issue 1, 61-73
Abstract:
In this paper we construct arbitrage-free call price surfaces from observed market data by locally constrained least squares approximations. The algorithm computes derivatives of the call surface accurately so that implied volatility, local volatility and transition probability density can be obtained at no additional cost. Observed input data are afflicted by a price uncertainty due to the bid--ask spread, quote imprecision and non-synchrony and cause an input data risk on the computed call surface and subsequently on the implied volatility surface. We model the input risk and perform an analysis to study and measure the effect of the input risk on the surfaces. With this analysis we can determine the trustworthiness of the computed results and their implications for option pricing a posteriori .
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2010.514005 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:12:y:2012:i:1:p:61-73
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2010.514005
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().