A generalized variance gamma process for financial applications
Roberto Marfe ()
Quantitative Finance, 2012, vol. 12, issue 1, 75-87
Abstract:
In this work we propose a new multivariate pure jump model. We fully characterize a multivariate L�vy process with finite- and infinite-activity components in positive and negative jumps. This process generalizes the variance gamma process, featuring a ‘stochastic volatility’ effect due to Poisson randomized intensities of positive and negative gamma jumps. Linear and nonlinear dependence is introduced, without restrictions on marginal properties, separately on both positive and negative jumps and on both finite- and infinite-activity jumps. Such a new approach provides greater flexibility in calibrating nonlinear dependence than in other comparable L�vy models in the literature. The model is very tractable and a straightforward multivariate simulation procedure is available. An empirical analysis shows an almost perfect fit of option prices across a span of moneyness and maturities and a very accurate multivariate fit of stock returns in terms of both linear and nonlinear dependence. A sensitivity analysis of multi-asset option prices emphasizes the importance of the proposed new approach for modeling dependence.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2010.505199 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:12:y:2012:i:1:p:75-87
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2010.505199
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().