EconPapers    
Economics at your fingertips  
 

Dynamic credit default swap curves in a network topology

Xiu Xu, Cathy Yi-Hsuan Chen and Wolfgang Härdle

Quantitative Finance, 2019, vol. 19, issue 10, 1705-1726

Abstract: Systemically important banks are connected and their default probabilities have dynamic dependencies. An extraction of default factors from cross-sectional credit default swap (CDS) curves allows us to analyze the shape and the dynamics of default probabilities. In extending the Dynamic Nelson Siegel (DNS) model to an across firm multivariate setting, and employing the generalized variance decomposition of Diebold and Yilmaz [On the network topology of variance decompositions: Measuring the connectedness of financial firms. J. Econom., 2014, 182(1), 119–134], we are able to establish a DNS network topology. Its geometry yields a platform to analyze the interconnectedness of long-, middle- and short-term default factors in a dynamic fashion and to forecast the CDS curves. Our analysis concentrates on 10 financial institutions with CDS curves comprising of a wide range of time-to-maturities. The extracted level factor representing long-term default risk shows a higher level of total connectedness than those derived for short-term and middle-term default risk, respectively. US banks contributed more to the long-term default spillover before 2012, whereas European banks were major default transmitters during and after the European debt crisis, both in the long-term and short-term. The comparison of the network DNS model with alternatives proposed in the literature indicates that our approach yields superior forecast properties of CDS curves.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2019.1585560 (text/html)
Access to full text is restricted to subscribers.

Related works:
Working Paper: Dynamic credit default swaps curves in a network topology (2016) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:19:y:2019:i:10:p:1705-1726

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697688.2019.1585560

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-31
Handle: RePEc:taf:quantf:v:19:y:2019:i:10:p:1705-1726