TERES: Tail Event Risk Expectile Shortfall
Andrija Mihoci,
Wolfgang Härdle and
Cathy Yi-Hsuan Chen
Quantitative Finance, 2021, vol. 21, issue 3, 449-460
Abstract:
We propose a generalized risk measure for expectile-based expected shortfall estimation. The generalization is designed with a mixture of Gaussian and Laplace densities. Our plug-in estimator is derived from an analytic relationship between expectiles and expected shortfall. We investigate the sensitivity and robustness of the expected shortfall to the underlying mixture parameter specification and the risk level. Empirical results from the US, German and UK stock markets and for selected NASDAQ blue chip companies indicate that expected shortfall can be successfully estimated using the proposed method on a monthly, weekly, daily and intra-day basis using a 1-year or 1-day time horizon across different risk levels.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2020.1786151 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:21:y:2021:i:3:p:449-460
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2020.1786151
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().