A generalized heterogeneous autoregressive model using market information
Rodrigo Hizmeri,
Marwan Izzeldin,
Ingmar Nolte and
Vasileios Pappas
Quantitative Finance, 2022, vol. 22, issue 8, 1513-1534
Abstract:
This paper introduces a novel class of volatility forecasting models that incorporate market realized (co)variances and semi(co)variances within the framework of a heterogeneous autoregressive (HAR) model. Our empirical analysis shows statistically and economically significant forecasting gains. For our most parsimonious market-HAR specification, stock volatility forecasting is improved by 9.80% points. Using a mixed sampling frequency market-HAR variant with low (high) sampling frequency for the stock (market) improves forecasting by a further 6.90% points. Our paper also develops noise-robust estimators to facilitate the use of realized semi(co)variances at high sampling frequencies.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/14697688.2022.2076606 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:22:y:2022:i:8:p:1513-1534
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697688.2022.2076606
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().