A maximum likelihood approach to volatility estimation for a Brownian motion using high, low and close price data
Malik Magdon-Ismail and
Amir Atiya
Quantitative Finance, 2003, vol. 3, issue 5, 376-384
Abstract:
Volatility plays an important role in derivatives pricing, asset allocation, and risk management, to name but a few areas. It is therefore crucial to make the utmost use of the scant information typically available in short time windows when estimating the volatility. We propose a volatility estimator using the high and the low information in addition to the close price, all of which are typically available to investors. The proposed estimator is based on a maximum likelihood approach. We present explicit formulae for the likelihood of the drift and volatility parameters when the underlying asset is assumed to follow a Brownian motion with constant drift and volatility. Our approach is to then maximize this likelihood to obtain the estimator of the volatility. While we present the method in the context of a Brownian motion, the general methodology is applicable whenever one can obtain the likelihood of the volatility parameter given the high, low and close information. We present simulations which indicate that our estimator achieves consistently better performance than existing estimators (that use the same information and assumptions) for simulated data. In addition, our simulations using real price data demonstrate that our method produces more stable estimates. We also consider the effects of quantized prices and discretized time.
Date: 2003
References: Add references at CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1088/1469-7688/3/5/304 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:3:y:2003:i:5:p:376-384
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1088/1469-7688/3/5/304
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().