EconPapers    
Economics at your fingertips  
 

Option pricing with Weyl-Titchmarsh theory

Yishen Li and Jin Zhang

Quantitative Finance, 2004, vol. 4, issue 4, 457-464

Abstract: In the Black-Merton-Scholes framework, the price of an underlying asset is assumed to follow a pure diffusion process. No-arbitrage theory shows that the price of an option contract written on the asset can be determined by solving a linear diffusion equation with variable coefficients. Applying the separating variable method, the problem of option pricing under state-dependent deterministic volatility can be transformed into a Schrodinger spectral problem, which has been well studied in quantum mechanics. With Weyl-Titchmarsh theory, we are able to determine the boundary condition and the nature of the eigenvalues and eigenfunctions. The solution can be written analytically in a Stieltjes integral. A few case studies demonstrate that a new analytical option pricing formula can be produced with our method.

Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/14697680400008643 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:4:y:2004:i:4:p:457-464

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697680400008643

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:quantf:v:4:y:2004:i:4:p:457-464