On the equivalence of the static and dynamic asset allocation problems
Robert Kohn and
Oana Papazoglu-Statescu
Quantitative Finance, 2006, vol. 6, issue 2, 173-183
Abstract:
A classic dynamic asset allocation problem optimizes the expected final-time utility of wealth, for an individual who can invest in a risky stock and a risk-free bond, trading continuously in time. Recently, several authors considered the corresponding static asset allocation problem in which the individual cannot trade but can invest in options as well as the underlying. The optimal static strategy can never do better than the optimal dynamic one. Surprisingly, however, for some market models the two approaches are equivalent. When this happens the static strategy is clearly preferable, since it avoids any impact of market frictions. This paper examines the question: when, exactly, are the static and dynamic approaches equivalent? We give an easily tested necessary and sufficient condition, and many non-trivial examples. Our analysis assumes that the stock follows a scalar diffusion process, and uses the completeness of the resulting market model. A simple special case is when the drift and volatility depend only on time; then the two approaches are equivalent precisely if (μ (t)- r)/σ2(t) is constant. This is not the Sharpe ratio or the market price of risk, but rather a nondimensional ratio of excess return to squared volatility that arises naturally in portfolio optimization problems.
Keywords: Asset allocation; Portfolio optimization (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/14697680600580946 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:6:y:2006:i:2:p:173-183
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697680600580946
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().