Nonlinear dynamical structural equation models
Wenyang Zhang and
Sik-Yum Lee
Quantitative Finance, 2009, vol. 9, issue 3, 305-314
Abstract:
Structural equation models (SEMs) have been widely used in behavioural, educational, medical and socio-psychological research for exploring and confirming relations among observed and latent variables. In the existing SEMs, the unknown coefficients in the measurement and structural equations are assumed to be constant with respect to time. This assumption does not always hold, as the relation among the observed and latent variables varies with time for some situations. In this paper, we propose nonlinear dynamical structural equation models to cope with these situations, and explore the nonlinear dynamic of the relation between the variables involved. A local maximum likelihood-based estimation procedure is proposed. We investigate a bootstrap resampling-based test for the hypothesis that the coefficient is constant with respect to time, as well as confidence bands for the unknown coefficients. Intensive simulation studies are conducted to show the empirical performance of the proposed estimation procedure, hypothesis test statistic and confidence band. Finally, a real example in relation to the stock market of Hong Kong is presented to demonstrate the proposed methodologies.
Keywords: Structural equation models; Nonlinear dynamical models; Latent variable; Local maximum likelihood estimation; Bootstrap resampling; Hypothesis test; Confidence band (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/14697680802183598 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:9:y:2009:i:3:p:305-314
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697680802183598
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().