A Big Data–Based Geographically Weighted Regression Model for Public Housing Prices: A Case Study in Singapore
Kai Cao,
Mi Diao and
Bo Wu
Annals of the American Association of Geographers, 2019, vol. 109, issue 1, 173-186
Abstract:
In this research, three hedonic pricing models, including an ordinary least squares (OLS) model, a Euclidean distance–based (ED-based) geographically weighted regression (GWR) model, and a travel time–based GWR model supported by a big data set of millions of smartcard transactions, have been developed to investigate the spatial variation of Housing Development Board (HDB) public housing resale prices in Singapore. The results help identify factors that could significantly affect public housing resale prices, including the age and the floor area of the housing units, the distance to the nearest park, the distance to the central business district (CBD), and the distance to the nearest Mass Rapid Transit (MRT) station. The comparison of the three models also explicitly shows that the two GWR models perform much better than the traditional linear hedonic regression model, given the identical variables and data used in the calibration. Furthermore, the travel time–based GWR model has better model fit compared to the ED-based GWR model in the case study. This study demonstrates the potential value of the big data–based GWR model in housing research. It could also be applied to other research fields such as public health and criminal justice.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://hdl.handle.net/10.1080/24694452.2018.1470925 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:raagxx:v:109:y:2019:i:1:p:173-186
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/raag21
DOI: 10.1080/24694452.2018.1470925
Access Statistics for this article
Annals of the American Association of Geographers is currently edited by Jennifer Cassidento
More articles in Annals of the American Association of Geographers from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().