Multiple Representations of Topographic Pattern and Geographic Context Determine Barrier Dune Resistance, Resilience, and the Overlap of Coastal Biogeomorphic Models
Li-Chih Hsu and
J. Anthony Stallins
Annals of the American Association of Geographers, 2020, vol. 110, issue 3, 640-660
Abstract:
We compared two biogeomorphic models that postulate how vegetation is intertwined in the response and recovery of barrier island dunes. Each model was developed in a separate coastal region using different methods. Both relied on simple elevational representations of topography. By comparing topographies among more islands of these two regions and by linking multiple representations of topographic pattern to resistance and resilience, we provide a synthesis that shows the validity of both models and the consequences of reifying one over the other. Using airborne LiDAR, topographic metrics based on point, patch, and gradient representations of topography were derived for fifty-two sites across eleven islands along the Georgia Bight and Virginia. These seventeen metrics were categorized in terms of resistance and resilience to disturbance from storm-forced high water levels and overwash. Resistance refers to intrinsic properties that directly counter expressions of power from disturbance. Resilience refers to the degrees of freedom to adjust and adapt to disturbance. Using a cross-scale data modeling approach, these data were visualized as topographic state space using multidimensional scaling. In this state space, similarity in topography as well as resistance and resilience were inferred through a site’s position along low-dimension axes representing geomorphic resistance and high-dimension axes representing the spatial landscape properties of biogeomorphic resilience. The two models overlap in how they account for barrier dune resistance and resilience along the U.S. south Atlantic coast. Islands of the Georgia Bight have a propensity for higher resistance and resilience. The Virginia islands have lower resistance and resilience. Key Words: barrier islands, biogeomorphology, cross-scale structure, dunes, resilience.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/24694452.2019.1654845 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:raagxx:v:110:y:2020:i:3:p:640-660
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/raag21
DOI: 10.1080/24694452.2019.1654845
Access Statistics for this article
Annals of the American Association of Geographers is currently edited by Jennifer Cassidento
More articles in Annals of the American Association of Geographers from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().