EconPapers    
Economics at your fingertips  
 

The role of disaggregated search data in improving tourism forecasts: Evidence from Sri Lanka

Kanchana Wickramasinghe and Shyama Ratnasiri

Current Issues in Tourism, 2021, vol. 24, issue 19, 2740-2754

Abstract: Formulation of effective policies to enhance the resilience of tourism following the COVID-19 pandemic essentially requires comprehensive empirical information on changes in tourism demand and associated economic costs. The paper makes a novel contribution to tourism literature by employing regionally and temporally disaggregated tourism data and Google search data in improving the accuracy of tourism forecasts. Further, the paper adopts two timeseries variables namely tourist arrivals and guest nights in order to understand the changes due to COVID-19 in tourism demand more comprehensively. Monthly data on international tourist arrivals, guest nights and Google trends from 2004 to 2019 are used to produce regionally disaggregated (Europe, Asia, the Pacific, America, Other) monthly tourism forecasts for Sri Lanka. We find that SARMAX models outperform the other models (ARIMA, ARIMAX, SARIMA) in forecasting tourism demand following COVID-19. Interestingly, the paper makes a further step in utilizing forecasts in estimating foregone economic benefits due to COVID-19 pandemic. We find a notable difference in estimated direct economic loss depending on the variable used in estimates. The percentage loss is 40% when arrival forecasts are used in estimates and 29% when guest night forecasts are used in estimates. This provides important policy implications for improving post-COVID tourism.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://hdl.handle.net/10.1080/13683500.2020.1849049 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:rcitxx:v:24:y:2021:i:19:p:2740-2754

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/rcit20

DOI: 10.1080/13683500.2020.1849049

Access Statistics for this article

Current Issues in Tourism is currently edited by Jennifer Tunstall

More articles in Current Issues in Tourism from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:rcitxx:v:24:y:2021:i:19:p:2740-2754