Folded and log-folded- distributions as models for insurance loss data
Vytaras Brazauskas and
Andreas Kleefeld
Scandinavian Actuarial Journal, 2011, vol. 2011, issue 1, 59-74
Abstract:
A rich variety of probability distributions has been proposed in the actuarial literature for fitting of insurance loss data. Examples include: lognormal, log-t, various versions of Pareto, loglogistic, Weibull, gamma and its variants, and generalized beta of the second kind distributions, among others. In this paper, we supplement the literature by adding the log-folded-normal and log-folded-t families. Shapes of the density function and key distributional properties of the ‘folded’ distributions are presented along with three methods for the estimation of parameters: method of maximum likelihood; method of moments; and method of trimmed moments. Further, large and small-sample properties of these estimators are studied in detail. Finally, we fit the newly proposed distributions to data which represent the total damage done by 827 fires in Norway for the year 1988. The fitted models are then employed in a few quantitative risk management examples, where point and interval estimates for several value-at-risk measures are calculated.
Date: 2011
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03461230903424199 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:sactxx:v:2011:y:2011:i:1:p:59-74
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/sact20
DOI: 10.1080/03461230903424199
Access Statistics for this article
Scandinavian Actuarial Journal is currently edited by Boualem Djehiche
More articles in Scandinavian Actuarial Journal from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().