Finite element/mode-matching analysis of ferrite/dielectric line junctions of arbitrary cross-section
Adam Kusiek
Journal of Electromagnetic Waves and Applications, 2018, vol. 32, issue 1, 67-76
Abstract:
This paper is focused on the analysis of line junctions obtained as a cascade of dielectric and ferrite guides of arbitrary cross-section. The main application of such structures is nonreciprocal devices such as isolators, circulators, or phase shifters. The efficient finite element/mode-matching approach is proposed to the analysis of such structures. In this approach, the finite element method is applied to determine propagation coefficients and field distributions in cross-sections of the structure. Then using mode-matching technique the scattering parameters of investigated junction are calculated. Since, all the field integrals required in mode-matching are evaluated in the pre-processing stage of finite element method, only small numerical effort is required to calculate scattering parameters of the junction. The numerical efficiency of proposed approach is examined for different geometries of longitudinally magnetized shielded ferrite coupled line junction. Obtained results are compared with the ones calculated using commercial software and presented in literature. A very good agreement is achieved.
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/09205071.2017.1369904 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tewaxx:v:32:y:2018:i:1:p:67-76
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tewa20
DOI: 10.1080/09205071.2017.1369904
Access Statistics for this article
Journal of Electromagnetic Waves and Applications is currently edited by Mohamad Abou El-Nasr and Pankaj Kumar Choudhury
More articles in Journal of Electromagnetic Waves and Applications from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().