A multi-parametric method for bias correction of DEA efficiency estimators
Panagiotis Zervopoulos,
Sokratis Sklavos,
Angelos Kanas and
Gang Cheng
Journal of the Operational Research Society, 2019, vol. 70, issue 4, 655-674
Abstract:
This paper emphasises the sensitivity of the data envelopment analysis (DEA) efficiency estimators to sampling variations of the production frontier and dimensionality of the production set. It has been proven that DEA yields asymptotic unbiased estimates. A DEA (smoothed) bootstrap method is widely being applied to address the inaccuracy of DEA estimators. The combination of DEA and a modified bootstrap expression enhances the statistical properties of DEA estimators without overcoming the inherent limitations of each of the two methods. This paper provides a non-resampling multi-parametric method to deal with the sensitivity of DEA estimators. The new method is applied to scaled samples, and the bias-corrected efficiency estimators are compared against their population counterparts. A comparative analysis among the standard bootstrap, the smoothed bootstrap, and the new method shows that the new method’s estimations provide a better fit to the population than the estimations of the standard and smoothed bootstrap.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/01605682.2018.1457478 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tjorxx:v:70:y:2019:i:4:p:655-674
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tjor20
DOI: 10.1080/01605682.2018.1457478
Access Statistics for this article
Journal of the Operational Research Society is currently edited by Tom Archibald
More articles in Journal of the Operational Research Society from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().