Comparisons of frequentist and Bayesian inferences for interval estimation on process yield
Chien-Wei Wu,
Ming-Hung Shu,
Ting-Ying Huang and
Bi-Min Hsu
Journal of the Operational Research Society, 2022, vol. 73, issue 12, 2694-2705
Abstract:
Process yield has been a standard metric for measuring the capability and performance of manufacturing processes. Process capability index Spk, a concise unit-less gauge with yield-sensitive functionality, communicates succinctly the genuine process yield for normally distributed processes. However, in frequentist statistics, the exact sampling distribution of Spk’s natural estimator is intractable. Various frequentist approaches have attempted to address its wide-scale accuracy in statistical inference. Among them, the approach of generalized confidence interval (GCI) has been demonstrated superiority. In this paper, we incorporate Markov chain Monte Carlo (MCMC) algorithms to introduce a Bayesian-type approach. Extensive simulations in comparison of accuracy and precision performances between the Spk’s frequentist and Bayesian inferences are conducted. Concerning coverage rates and average interval widths of the inferential criteria, Spk’s Bayesian MCMC credibility intervals perform better than frequentist GCIs in most cases, particularly, the cases with only a few samples of information acquired from the manufacturing process.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/01605682.2021.2015253 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tjorxx:v:73:y:2022:i:12:p:2694-2705
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tjor20
DOI: 10.1080/01605682.2021.2015253
Access Statistics for this article
Journal of the Operational Research Society is currently edited by Tom Archibald
More articles in Journal of the Operational Research Society from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().