EconPapers    
Economics at your fingertips  
 

Classification and prediction of burr formation in micro drilling of ductile metals

Yoomin Ahn and Seoung Hwan Lee

International Journal of Production Research, 2017, vol. 55, issue 17, 4833-4846

Abstract: In the micro drilling of precision miniature holes, the formation of exit burrs is a topic of interest, especially for ductile materials. Because such burrs are difficult to remove, it is important to be able to predict various burr types and to employ burr minimisation schemes that consider burrs’ micro-scale characteristics. In the present work, an artificial neural network (ANN) was used to predict the formation of burrs in the micro drilling of copper and brass, along with burr formation/optimisation analysis specialised for micro drills. The influence of cutting conditions, including cutting speed, feed and drill diameter, upon exit micro burr characteristics such as burr size and type was observed, analysed and classified. Based on the results, an empirical equation to predict micro burr height is proposed herein. The classification results were compared with conventional burr cases using burr control charts. Then, micro burr types were predicted by means of an ANN, using the influential parameters as input vectors. The usefulness of the proposed scheme was demonstrated by comparing the experimental and prediction/analysis results.

Date: 2017
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2016.1254355 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:55:y:2017:i:17:p:4833-4846

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2016.1254355

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:55:y:2017:i:17:p:4833-4846