EconPapers    
Economics at your fingertips  
 

Computational modelling of manufacturing choice complexity in a mixed-model assembly line

Moise Busogi, Kasin Ransikarbum, Yeong Gwang Oh and Namhun Kim

International Journal of Production Research, 2017, vol. 55, issue 20, 5976-5990

Abstract: Manufacturing systems have evolved to adopt a mixed-model assembly line enabling the production of high product variety. Although the mixed-model assembly system with semi-automation (i.e. human involvement) can offer a wide range of advantages, the system becomes very complex as variety increases. Further, while the complexity from different options can worsen the system performance, there is a lack of quantifiable models for manufacturing complexity in the literature. Thus, in this paper, we propose a novel method to quantify manufacturing choice complexity for the effective management of semi-automated systems in a mixed-model assembly line. Based on the concept of information entropy, our model considers both the options mix and the similarities between options. The proposed model, along with an illustrative case study, not only serves as a tool to quantitatively assess the impact of choice complexity on total system performance, but also provides an insight into how complexity can be mitigated without affecting the overall manufacturing throughput.

Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2017.1319088 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:55:y:2017:i:20:p:5976-5990

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2017.1319088

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:55:y:2017:i:20:p:5976-5990