Productivity improvement through a sequencing generalised assignment in an assembly line system
Seyed-Esmaeil Moussavi,
Morad Mahdjoub and
Olivier Grunder
International Journal of Production Research, 2017, vol. 55, issue 24, 7509-7523
Abstract:
This paper considers the assignment of heterogeneous workers to workstations of an assembly line in order to minimise the total production time. As the structure of the system implies that each of the workstations needs at least one worker, thus the problem can be considered as a generalised assignment problem (GAP). The objective is to perform an efficient human resource planning for a specified horizon consisting of several periods. Hence, we present an extension of the generalised assignment problem, consisting of a set of GAPs (one for each planning period) in which each GAP depends on the previous ones. A mixed integer mathematical model is presented for this sequencing assignment problem. The model is solved by an exact algorithm using Gurobi solver. It is proved that the problem is NP-hard and solving the medium and large size instances is not possible by the exact algorithms. Hence, two matheuristic approaches based on the disaggregated formulation of GAP are proposed. The first approach solves the problem through two sub-problems as the transportation formulation and assignment formulation. The second approach solves the problem by decomposition of the problem into several classical GAPs. The approaches are examined by a total of 27 instances. The results illustrate the efficiency of the proposed algorithms in the computational time and accuracy of the solutions.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2017.1378828 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:55:y:2017:i:24:p:7509-7523
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2017.1378828
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().