Bayesian regularisation neural network based on artificial intelligence optimisation
Dingqi Yan,
Qi Zhou,
Jianzhou Wang and
Na Zhang
International Journal of Production Research, 2017, vol. 55, issue 8, 2266-2287
Abstract:
Stock prediction is generally considered to be challenging and known for its high noise and strong nonlinearities in financial time series analysis. However, current forecasting models ignore the importance of model parameter optimisation and the use of recent data. In this article, a novel forecasting approach with a Bayesian-regularised artificial neural networks (BR-ANN) was proposed. The weight of the proposed model (BR-ANN) is determined by the particle swarm optimisation (PSO) algorithm. Daily market prices and financial technical indicators are utilised as inputs to predict the one day future closing price of the Shanghai (in China) composite index. The Bayesian-regularised network uses a probabilistic nature for the network weights and can reduce the potential for over-fitting and over-training. Our empirical study and the results of our K-line theory analysis indicate that PSO is determined to be an effective algorithm to optimise the parameters of the Bayesian neural network compared with other well-known prediction algorithms. In particular, the PSO model is more reliable than the simple Bayesian regularisation neural network near the local maximum value.
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2016.1237785 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:55:y:2017:i:8:p:2266-2287
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2016.1237785
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().