Digital twin-driven rapid individualised designing of automated flow-shop manufacturing system
Qiang Liu,
Hao Zhang,
Jiewu Leng and
Xin Chen
International Journal of Production Research, 2019, vol. 57, issue 12, 3903-3919
Abstract:
Under a mass individualisation paradigm, the individualised design of manufacturing systems is difficult as it involves adaptive integrating both new and legacy machines for the formation of part families with uncertainty. A systematic virtual model mirroring the real world of manufacturing system is essential to bridge the gap between its design and operation. This paper presents a digital twin-driven methodology for rapid individualised designing of the automated flow-shop manufacturing system. The digital twin merges physics-based system modelling and distributed semi-physical simulation to provide engineering solution analysis capabilities and generates an authoritative digital design of the system at pre-production phase. An effective feedbacking of collected decision-support information from the intelligent multi-objective optimisation of the dynamic execution is presented to boost the applicability of the digital twin vision in the designing of AFMS. Finally, a bi-level iterative coordination mechanism is proposed to achieve optimal design performance for required functions of AFMS. A case study is conducted to prove the feasibility and effectiveness of the proposed methodology.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2018.1471243 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:57:y:2019:i:12:p:3903-3919
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2018.1471243
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().