EconPapers    
Economics at your fingertips  
 

Logistics optimisation of slab pre-marshalling problem in steel industry

Peixin Ge, Ying Meng, Jiyin Liu, Lixin Tang and Ren Zhao

International Journal of Production Research, 2020, vol. 58, issue 13, 4050-4070

Abstract: We study the slab pre-marshalling problem to re-position slabs in a way that the slabs are stored in the least number of stacks and each stack contains only the slabs of the same group, which can be utilised interchangeably. In this way, when a slab of any group is required, the topmost slab can always be picked up without shuffling. During pre-marshalling, however, at most two slabs can be moved by one operation. In this paper, we present a network model with three valid inequalities to solve this problem. With a small amount of labelled data from the model approach, a self-training technique is applied to train a function for predicting the best next move. Then, a new hybrid algorithm is developed to solve the practical problems by combining the self-training technique, heuristics, and the branch-and-bound algorithm with five dominance rules. The experimental results demonstrate the effectiveness of this network model and valid inequalities, and the performances of different components of this algorithm. The new algorithm produces high-quality solutions within seconds.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2019.1641238 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:58:y:2020:i:13:p:4050-4070

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2019.1641238

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:58:y:2020:i:13:p:4050-4070