EconPapers    
Economics at your fingertips  
 

The multi-skilled multi-period workforce assignment problem

Haibo Wang, Bahram Alidaee, Jaime Ortiz and Wei Wang

International Journal of Production Research, 2021, vol. 59, issue 18, 5477-5494

Abstract: Seasonal business operations hire workers depending on environmental conditions and market prices. For example, during the growing and harvest seasons, agricultural businesses employ multiple workers to perform activities such as tilling soil, sowing seed, spreading fertiliser, spraying pesticides, removing weeds, and threshing crops. This study proposes two mixed-integer programming (MIP) models with an effective heuristic to solve the problem of simultaneously assigning multiple multi-skilled workers to the numerous tasks that require different skill sets during single-and multiple-period operations. The multi-skilled workforce management (MSWM) problem is NP hard in the strong sense, and it seems unlikely that large-sized realistic instances could be solved efficiently by exact algorithms directly except for some instances with very sparse tasks and skill sets. Thus, this study presents a heuristic algorithm using k-Opt as a diversification strategy embedded within the Tabu search for this complex problem. To assess the solution quality of the k-Opt heuristic, we solved two sets of instances with different sizes by running the exact solver Gurobi and the proposed heuristic algorithm with a single processor as well as running Gurobi with multiple processors. This heuristic is applicable to other multitasking situations where many workers with multiple capabilities are deployed.

Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2020.1783009 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:59:y:2021:i:18:p:5477-5494

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2020.1783009

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:59:y:2021:i:18:p:5477-5494