EconPapers    
Economics at your fingertips  
 

Rule based workload control in semiconductor manufacturing revisited

Philipp Neuner and Stefan Haeussler

International Journal of Production Research, 2021, vol. 59, issue 19, 5972-5991

Abstract: An essential task in manufacturing planning and control is to determine when to release orders to the shop floor. A prominent approach is the workload control (WLC) concept which originated from the idea of controlling flow times by controlling order releases. Despite recent advances in rule based WLC models, the recent semiconductor literature has neglected them, although it has been shown that they outperform most other periodic and continuous order release models. Therefore, we adapt the most successful rule based WLC model, the LUMS-COR approach and compare it with two approaches from the semiconductor manufacturing literature: Starvation Avoidance (SA) and ConLOAD approach. We include three pool sequencing rules, namely First-Come First-Served (FCFS), Earliest Due Date (EDD) and Critical Ratio (CR). We analyse their performance using a simulation model of a scaled-down wafer fabrication facility. The results show that, in comparison to the other two order release approaches, the LUMS-COR model yields lower total costs due to a more balanced shop and better timing performance which is robust across different settings. This suggests that the adapted LUMS-COR model has high potential to become a viable alternative to the rule based order release mechanisms used in semiconductor industry to date.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2020.1797208 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:59:y:2021:i:19:p:5972-5991

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2020.1797208

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:59:y:2021:i:19:p:5972-5991