Joint optimisation for dynamic flexible job-shop scheduling problem with transportation time and resource constraints
Weibo Ren,
Yan Yan,
Yaoguang Hu and
Yu Guan
International Journal of Production Research, 2022, vol. 60, issue 18, 5675-5696
Abstract:
Dynamic flexible job-shop scheduling is traditionally a challenge in real-world manufacturing systems, especially considering the constraints of transportation resources and transportation time. To address the dynamic optimisation problem in flexible manufacturing systems, this paper proposes a novel proactive-reactive methodology to adapt to the dynamic changes in working environments and addresses the joint scheduling problem for machine tools and transportation resources. The joint optimisation model is first formulated as a mixed-integer programming model considering production efficiency and transportation constraints. The flowchart of the dynamic scheduling system is then designed for dynamic decision-making, and a novel particle swarm optimisation algorithm integrated with genetic operators is developed to respond to dynamic events and generate the reschedule plan in time. Finally, several numerical experiments and case studies in reality are applied to verify the efficiency of the developed methodology. Common dispatching rules and heuristic methods are also applied to test and evaluate the efficiency of the developed algorithm. Computational results demonstrate that the developed methods and decision models are efficient for dynamic job-shop scheduling problems in flexible manufacturing systems, which can acquire rather a good effect in practical production.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2021.1968526 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:60:y:2022:i:18:p:5675-5696
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2021.1968526
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().