EconPapers    
Economics at your fingertips  
 

Robust modelling and prediction of the COVID-19 pandemic in Canada

Soheyl Khalilpourazari and Hossein Hashemi Doulabi

International Journal of Production Research, 2023, vol. 61, issue 24, 8367-8383

Abstract: Since the beginning of COVID-19, more than 13,036,550 people have been infected, and 571,574 died because of the disease by July 13, 2020. Developing new methodologies to predict the COVID-19 pandemic will help policymakers plan to contain the spread of the virus. In this research, we develop a Stochastic Fractal Search algorithm combined with a mathematical model to forecast the pandemic. To enhance the algorithm, we employed a design of the experiments approach for tuning. We applied our algorithm to public datasets to model the COVID-19 pandemic in Canada in the upcoming months. Our algorithm predicts the number of symptomatic, asymptomatic, life-threatening, recovered, and death cases. The outcomes reveal that asymptomatic cases play the main role in the transmission of the virus. We also show that increasing the testing capacity would enhance the detection of asymptomatic cases and limit community transmission. Moreover, we performed sensitivity analyses to discover the effects of changes in transmission rates on pandemic growth. The sensitivity analyses provide a realistic overview of the future number of cases if the transmission rates change due to the emergence of new variants or change in social measures. Considering the outcomes, we provide several managerial insights to minimize community transmission.

Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2021.1936261 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:61:y:2023:i:24:p:8367-8383

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2021.1936261

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:61:y:2023:i:24:p:8367-8383