EconPapers    
Economics at your fingertips  
 

A hybrid discrete differential evolution – genetic algorithm approach with a new batch formation mechanism for parallel batch scheduling considering batch delivery

Ibrahim Kucukkoc, Gulsen Aydin Keskin, Aslan Deniz Karaoglan and Sevgi Karadag

International Journal of Production Research, 2024, vol. 62, issue 1-2, 460-482

Abstract: Scheduling is an important decision-making problem in production planning and the resulting decisions have a direct impact on reducing waste, including energy and idle capacity. Batch scheduling problems occur in various industries from automotive to food and energy. This paper introduces the parallel p-batch scheduling problem with batch delivery, content-dependent loading/unloading times and energy-aware objective function. The problem has been motivated by a real system used for freezing products in a food processing company. A mixed-integer linear programming model (MILP) has been developed and explained through a numerical example. As it is not practical to solve large-size instances via a mathematical model, the discrete differential evolution algorithm has been improved (iDDE) and hybridised with the genetic algorithm (GA). A release-oriented vector generation procedure and a heuristic batch formation mechanism have been developed to efficiently solve the problem. The performance of the proposed approach (iDDEGA) has been compared with CPLEX, iDDE and GA through a comprehensive computational study. A case study was conducted based on real data collected from the freezing process of the company, which also verified the practical use and advantages of the proposed methodology.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2023.2233626 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:62:y:2024:i:1-2:p:460-482

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2023.2233626

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:62:y:2024:i:1-2:p:460-482