Valid inequalities for the non-unit demand capacitated minimum spanning tree problem with arc time windows and flow costs
Manolis N. Kritikos and
George Ioannou
International Journal of Production Research, 2024, vol. 62, issue 1-2, 574-585
Abstract:
In this paper, we introduce the non-unit demand capacitated minimum spanning tree problem with arc time windows and flow costs. The problem is a variant of the capacitated minimum spanning tree problem with arc time windows (CMSTP_ATW). We devise a mixed integer programming (MIP) formulation to model the problem and solve it using CPLEX. Furthermore, we propose three sets of inequalities, and we prove that they are valid. These valid inequalities tighten the model and lead to better lower bounds. To examine the quality of the solutions obtained, we convert the original data sets of Solomon (1987, “Algorithms for the Vehicle Routing and Scheduling Problem with Time Window Constraints.” Operations Research 35 (2): 254–265. https://doi.org/10.1287/opre.35.2.254) to approximate the non-unit demand CMSTP_ATW instances and provide results for the problems with 100 nodes. We execute extensive computational experiments, and the results show the positive effect of the inclusion of valid inequalities in the MIP.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2023.2276818 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:62:y:2024:i:1-2:p:574-585
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2023.2276818
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().