Load prediction of parcel pick-up points: model-driven vs data-driven approaches
Thi-Thu-Tam Nguyen,
Adnane Cabani,
Iyadh Cabani,
Koen De Turck and
Michel Kieffer
International Journal of Production Research, 2024, vol. 62, issue 11, 4046-4075
Abstract:
Pick-Up Points (PUPs) represent an alternative delivery option for online purchases. Parcels are delivered at a reduced cost to PUPs and wait until being picked up by customers or returned to the original warehouse if their sojourn time is over. When the chosen PUP is overloaded, the parcel may be refused and delivered to the next available PUP on the carrier tour. This paper presents and compares forecasting approaches for the load of a PUP to help PUP management companies balance delivery flows and reduce PUP overload. The parcel life-cycle has been taken into account in the forecasting process via models of the flow of parcel orders, the parcel delivery delays, and the pick-up process. Model-driven and data-driven approaches are compared in terms of load-prediction accuracy. For the considered example, the best approach (which makes use of the relationship of the load with the delivery and pick-up processes) is able to predict the load up to 4 days ahead with mean absolute errors ranging from 3.16 parcels (1 day ahead) to 8.51 parcels (4 days ahead) for a PUP with an average load of 45 parcels.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2023.2253475 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:62:y:2024:i:11:p:4046-4075
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2023.2253475
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().