A novel collaborative iterative greedy algorithm for hybrid flowshop scheduling problem with batch processing machines and variable sublots
Chengshuai Li,
Yuyan Han,
Biao Zhang,
Yuting Wang,
Junqing Li and
Kaizhou Gao
International Journal of Production Research, 2024, vol. 62, issue 11, 4076-4096
Abstract:
Lot streaming technology enables continuous overlapping operations, which is of great significance in shortening production cycles, reducing unnecessary waiting time, and increasing production capacity. However, the capacity constraint of batch processing machines may lead to inevitable variations in sublots. Therefore, the key focus of our research is to control variations of sublot for maximising benefits. In view of this, we investigate a hybrid flowshop scheduling problem (HFSP) with batch processing machines and variable sublots (HFSP-BVS) integrating sequence-dependent setup times and transportation times. To address HFSP-BVS, a MILP model is first established, and a novel collaborative iterative greedy (NCIG) algorithm is proposed to optimise the cumulative payoffs associated with delivery dates. In NCIG, a collaborative initialisation method by extracting good information from an archive is proposed, and a specific destruction-reconfiguration strategy is designed to control the variations of sublots in the batch processing stage. Furthermore, a dynamic acceptance criterion is designed to balance the algorithm's exploitation and exploration capabilities. Lastly, we conduct comparisons between the NCIG algorithm and five other metaheuristic algorithms on 100 test instances. The results show that NCIG outperforms them by 1.89% and 61.42% on average in terms of the total penalty and RPI values, respectively.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2023.2253925 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:62:y:2024:i:11:p:4076-4096
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2023.2253925
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().