Deep reinforcement learning on variable stiffness compliant control for programming-free robotic assembly in smart manufacturing
Zhenrui Ji,
Gang Liu,
Wenjun Xu,
Bitao Yao,
Xuedong Liu and
Zude Zhou
International Journal of Production Research, 2024, vol. 62, issue 19, 7073-7095
Abstract:
Nowadays industrial robots have been increasingly widely deployed across various sectors and assembly tasks are seen as one of the dominant application fields. The assembly tasks, as the critical process in manufacturing, are still challenging for the robot because of the complex contact state between the robot and the environment (i.e. assembly components). In the assembly task, the robot should switch its controller from a non-contact mode to a contact-rich mode when the contact condition changes, where compliant behaviour is necessary for robustness to uncertain contact and safety of physical interaction. This paper proposes a deep reinforcement learning (DRL) method to achieve such compliance using variable stiffness compliant control. Concretely, a Cartesian compliant controller is built on a virtual dynamics model with a variable non-diagonal stiffness matrix to derive desired motion that reacts with the external force/torque. Upon that, a deep deterministic policy gradient (DDPG)-based agent is deployed to fine-tune such a non-diagonal stiffness matrix. After error-and-trial learning, robots can handle changes in contact state in assembly tasks without any pause and switching its controller mode, thus increasing task efficiency and compliance. The simulation and experiments show that our method allows robots to complete assembly tasks safely and efficiently under noisy observation.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2024.2318488 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:62:y:2024:i:19:p:7073-7095
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2024.2318488
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().