A variable neighborhood search and mixed-integer programming models for a distributed maintenance service network scheduling problem
Baoyu Liao,
Shaojun Lu,
Tao Jiang and
Xing Zhu
International Journal of Production Research, 2024, vol. 62, issue 20, 7466-7485
Abstract:
Ship maintenance service optimisation is of great significance for improving the competitiveness of shipbuilding enterprises. In this paper, we investigate a ship maintenance service scheduling problem considering the deteriorating maintenance time, distributed maintenance tasks, and limited maintenance teams. The objective is to minimise the service span. First, we construct an initial mixed-integer programming model for the studied problem. Then, through the property analysis of the problem with a single maintenance team, an exact scheduling algorithm is proposed. In addition, the lower bound of the problem with multiple maintenance teams is derived. A scheduled rule is developed to obtain the lower bound for the problem. Based on the property analysis, the original mixed-integer programming model is simplified to an improved mathematical programming model. Since the studied problem is NP-hard, this paper proposes two heuristic algorithms and an integrated metaheuristic algorithm based on the variable neighbourhood search to obtain approximate optimal solutions in a reasonable time. In computational experiments, the two models can solve problems on small scale, while metaheuristics can find approximately optimal solutions in each problem category. Moreover, the computational results validate the performance of the proposed integrated metaheuristic in terms of convergence and stability.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2022.2138612 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:62:y:2024:i:20:p:7466-7485
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2022.2138612
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().