EconPapers    
Economics at your fingertips  
 

A genetic algorithm for fuzzy identical parallel machine scheduling of minimising total weighted tardiness under resource constraint

Kai Li, Liping Xu, Han Zhang and Jianfu Chen

International Journal of Production Research, 2024, vol. 62, issue 21, 7619-7643

Abstract: Due to the severity of resource consumption and uncertainty in orders, new challenges have arisen for production scheduling in enterprises. This paper studies the scheduling problem of minimising the total weighted tardiness for jobs with fuzzy processing times and due dates on identical parallel machines with resource constraint. To address this research problem, we first propose methods to calculate the upper bound of resource consumption and the maximum number of machines that can be used, effectively reducing the search space and improving the algorithm's efficiency. Secondly, a local search algorithm based on job swapping is proposed to enhance the algorithm's performance. Then, repair algorithms based on job removal and job swapping are designed to repair infeasible solutions. Finally, we propose a fuzzy genetic algorithm (FGALS) to solve the problem based on the above elements. Through extensive simulation experiments, the effectiveness and efficiency of the FGALS algorithm are verified by comparing it with commercial solver Gurobi and several meta-heuristic algorithms.

Date: 2024
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2024.2323065 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:62:y:2024:i:21:p:7619-7643

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2024.2323065

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:62:y:2024:i:21:p:7619-7643