EconPapers    
Economics at your fingertips  
 

Artificial intelligence and prescriptive analytics for supply chain resilience: a systematic literature review and research agenda

Conn Smyth, Denis Dennehy, Samuel Fosso Wamba, Murray Scott and Antoine Harfouche

International Journal of Production Research, 2024, vol. 62, issue 23, 8537-8561

Abstract: Artificial Intelligence (AI) and prescriptive analytics are increasingly being reported as having transformative powers to enable resilient supply chains (SC). Despite such a benefit, and the increase in popularity of AI and analytics in general, research is largely fragmented into streams based on different types of AI technologies across several SC contexts and through varying disciplinary perspectives. In response, we curate and synthesise this fragmented body of knowledge by conducting a systematic literature review of AI research in supply chains that have been published in 3* and 4* Chartered Association of Business Schools (CABS) ranked journals between 2000 and 2023. The search strategy retrieved 5, 293 studies, of which 76 were identified as primary papers relevant to this study. The study contributes to the accumulative building of knowledge by extending theoretical discourse about the specificities of AI for prescriptive analytics to enable SC resilience. This study proposes a strategic AI resilience framework to support SC decision-makers enhance the use and value of prescriptive analytics as an enabler to developing resilient SC. We make the call to action for an orchestrated effort within and between academic disciplines and organisations that are guided by a research agenda to guide future research initiatives.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2024.2341415 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:62:y:2024:i:23:p:8537-8561

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2024.2341415

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:62:y:2024:i:23:p:8537-8561