Improving the decision-making process by considering supply uncertainty – a case study in the forest value chain
Vanessa Simard,
Mikael Rönnqvist,
Luc LeBel and
Nadia Lehoux
International Journal of Production Research, 2024, vol. 62, issue 3, 665-684
Abstract:
Planning decisions are generally subject to some level of uncertainty. In forestry, data describing the resources available have a major impact on operations performance and productivity. This paper aims to present a method to improve decision-making in the forest supply chain by taking supply uncertainty into account using the results of data quality assessments. The case study describes the operations planning process of a Canadian forest products company dealing with an uncertain volume of wood supply. Three approaches to constructing probability distributions based on data quality are tested. Each approach offers a different level of precision: (1) a frequency distribution of accuracy, (2) a normal distribution based on average accuracy, and (3) a normal distribution based on data quality classification. Using stochastic programming to plan transport and production shows that lower costs can be achieved with a general characterisation of the data accuracy. Not considering uncertainty when planning operations leads to a significant replanning transportation cost. Using classes of data quality to include uncertainty in operations planning contributes to reducing the transportation cost from $15.90/m3 down to $15.32/m3 representing 3.6%.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2023.2169382 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:62:y:2024:i:3:p:665-684
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2023.2169382
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().