EconPapers    
Economics at your fingertips  
 

Machine learning based prediction of melt pool morphology in a laser-based powder bed fusion additive manufacturing process

Zhibo Zhang, Chandan Kumar Sahu, Shubhendu Kumar Singh, Rahul Rai, Zhuo Yang and Yan Lu

International Journal of Production Research, 2024, vol. 62, issue 5, 1803-1817

Abstract: Laser-based powder bed fusion (L-PBF) has become the de facto choice for metal additive manufacturing (AM) processes. Even after considerable research investments, components manufactured using L-PBF lack consistency in their quality. Realizing the crucial role of the melt pool in controlling the final build quality, we predict the morphology of the melt pool directly from the build commands in an L-PBF process. We leverage machine learning techniques to predict quantitative attributes like the size as well as qualitative attributes like the shape of the melt pool. The area of the melt pool is predicted using an LSTM network. The outlined LSTM-based approach estimates the area with $ 90.7\% $ 90.7% accuracy. The shape is inferred by synthesising the images of the melt pool by using a Melt Pool Generative Adversarial Network (MP-GAN). The synthetic images attain a structural similarity score of 0.91. The precision and accuracy of the results showcase the efficacy of the outlined approach and pave the way for real-time monitoring and control of the melt pool to build products with consistently better quality.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2023.2201860 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:62:y:2024:i:5:p:1803-1817

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2023.2201860

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:62:y:2024:i:5:p:1803-1817