True sparse PCA for reducing the number of essential sensors in virtual metrology
Yifan Xie,
Tianhui Wang,
Young-Seon Jeong,
Ali Tosyali and
Myong K. Jeong
International Journal of Production Research, 2024, vol. 62, issue 6, 2142-2157
Abstract:
In the semiconductor industry, virtual metrology (VM) is a cost-effective and efficient technique for monitoring the processes from one wafer to another. This technique is implemented by generating a predictive model that uses real-time data from equipment sensors in conjunction with measured wafer quality characteristics. Before establishing a prediction model for the VM system, appropriate selection of relevant input variables should be performed to maintain the efficiency of subsequent analyses considering the large dimensionality of the sensor data inputs. However, wafer production processes usually employ multiple sensors, which leads to cost escalations. Herein, we propose a variant of the sparse principal component analysis (PCA) called true sparse PCA (TSPCA). The proposed method uses a small number of input variables in the first few principal components. The main contribution of the proposed TSPCA is reducing the number of essential sensors. Our experimental results demonstrate that compared to the existing sparse PCA methods, the proposed approach can reduce the number of sensors required while explaining an approximately equivalent amount of variance.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2023.2217282 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:62:y:2024:i:6:p:2142-2157
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2023.2217282
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().