EconPapers    
Economics at your fingertips  
 

Digital Twin simulation models: a validation method based on machine learning and control charts

Carlos Henrique dos Santos, Afonso Teberga Campos, José Arnaldo Barra Montevechi, Rafael de Carvalho Miranda and Antonio Fernando Branco Costa

International Journal of Production Research, 2024, vol. 62, issue 7, 2398-2414

Abstract: The adoption of simulation models as Digital Twins (DTs) has been standing out in recent years and represents a revolution in decision-making. In this context, we note increasingly faster and more efficient decisions by mirroring the behaviour of physical systems. On the other hand, we highlight the challenges to ensure the simulation models validity over time since traditional validation approaches have limitations when we consider the periodic update of the model. Thus, the present work proposes an approach based on the constant assessment of these models through Machine Learning and control charts. To this end, we suggest a monitoring tool using the K-Nearest Neighbors (K-NN) classifier, combined with a p-control chart, to periodically assess the validity of DT simulation models. The proposed approach was tested in several theoretical cases and also implemented in a real case study. The findings suggest that the proposed tool can monitor the DT functioning and identify possible special causes that could compromise its results. Finally, we highlight the wide applicability of the proposed tool, which can be used in different DT models, including near/real-time models with different characteristics regarding connection, integration, and complexity.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2023.2217299 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:62:y:2024:i:7:p:2398-2414

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2023.2217299

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tprsxx:v:62:y:2024:i:7:p:2398-2414