EconPapers    
Economics at your fingertips  
 

Risk-averse decision-making to maintain supply chain viability under propagated disruptions

Tadeusz Sawik and Bartosz Sawik

International Journal of Production Research, 2024, vol. 62, issue 8, 2853-2867

Abstract: In this paper, stochastic optimisation of CVaR is applied to maintain risk-averse viability and improve resilience of a supply chain under propagated disruptions. In order to establish the risk-averse boundaries on supply chain viability space, two stochastic optimisation models are developed with the two conflicting objectives: minimisation of Conditional Cost-at-Risk and maximisation of Conditional Service-at-Risk. Then, the risk-averse viable production trajectory between the two boundaries is selected using a stochastic mixed integer quadratic programming model. The proposed approach is applied to maintain the supply chain viability in the smartphone manufacturing and the results of computational experiments are provided. The findings indicate that when the decision-making is more risk-aversive, the size of the viability space between the two boundaries is greater. As a result, more room is available for selecting viable production trajectories under severe disruptions. Moreover, the larger is viability space, the higher is both worst-case and average resilience of the supply chain. Risk-neutral, single-objective decision-making may reduce the supply chain viability. A single-objective supply chain optimisation which moves production to the corresponding boundary of the viability space, should not be applied under severe disruption risks to avoid greater losses.

Date: 2024
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2023.2236726 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:62:y:2024:i:8:p:2853-2867

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20

DOI: 10.1080/00207543.2023.2236726

Access Statistics for this article

International Journal of Production Research is currently edited by Professor A. Dolgui

More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-22
Handle: RePEc:taf:tprsxx:v:62:y:2024:i:8:p:2853-2867