Waste reduction via image classification algorithms: beyond the human eye with an AI-based vision
Mohammad Shahin,
F. Frank Chen,
Ali Hosseinzadeh,
Hamed Bouzary and
Awni Shahin
International Journal of Production Research, 2024, vol. 62, issue 9, 3193-3211
Abstract:
Modern manufacturing is the world's largest and most automated industrial sector. The rise of Industry 4.0 technologies such as Big Data, Internet of Things (IoT) devices, and Machine Learning has enabled a better connection with machines and factory systems. Data harvesting allowed for a more seamless and comprehensive implementation of the knowledge-based decision-making process. New models that provide a competitive edge must be created by combining the Lean paradigm with the new technologies of Industry 4.0. This paper presents novel computer-based vision models for automated detection and classification of damaged packages from intact packages. In high-volume production environments, the package manual inspection process through the human eye consumes inordinate amounts of time poring over physical packages. Our proposed three different computer-based vision approaches detect damaged packages to prevent them from moving to shipping operations that would otherwise incur waste in the form of wasted operating hours, wasted resources and lost customer satisfaction. The proposed approaches were carried out on a data set consisting of package images and achieved high precision, accuracy, and recall values during the training and validation stage, with the resultant trained YOLO v7 model.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207543.2023.2225652 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tprsxx:v:62:y:2024:i:9:p:3193-3211
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TPRS20
DOI: 10.1080/00207543.2023.2225652
Access Statistics for this article
International Journal of Production Research is currently edited by Professor A. Dolgui
More articles in International Journal of Production Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().